Identification of Arx transcriptional targets in the developing basal forebrain

نویسندگان

  • Carl T. Fulp
  • Ginam Cho
  • Eric D. Marsh
  • Ilya M. Nasrallah
  • Patricia A. Labosky
  • Jeffrey A. Golden
چکیده

Mutations in the aristaless-related homeobox (ARX) gene are associated with multiple neurologic disorders in humans. Studies in mice indicate Arx plays a role in neuronal progenitor proliferation and development of the cerebral cortex, thalamus, hippocampus, striatum, and olfactory bulbs. Specific defects associated with Arx loss of function include abnormal interneuron migration and subtype differentiation. How disruptions in ARX result in human disease and how loss of Arx in mice results in these phenotypes remains poorly understood. To gain insight into the biological functions of Arx, we performed a genome-wide expression screen to identify transcriptional changes within the subpallium in the absence of Arx. We have identified 84 genes whose expression was dysregulated in the absence of Arx. This population was enriched in genes involved in cell migration, axonal guidance, neurogenesis, and regulation of transcription and includes genes implicated in autism, epilepsy, and mental retardation; all features recognized in patients with ARX mutations. Additionally, we found Arx directly repressed three of the identified transcription factors: Lmo1, Ebf3 and Shox2. To further understand how the identified genes are involved in neural development, we used gene set enrichment algorithms to compare the Arx gene regulatory network (GRN) to the Dlx1/2 GRN and interneuron transcriptome. These analyses identified a subset of genes in the Arx GRN that are shared with that of the Dlx1/2 GRN and that are enriched in the interneuron transcriptome. These data indicate Arx plays multiple roles in forebrain development, both dependent and independent of Dlx1/2, and thus provides further insights into the understanding of the mechanisms underlying the pathology of mental retardation and epilepsy phenotypes resulting from ARX mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a direct Dlx homeodomain target in the developing mouse forebrain and retina by optimization of chromatin immunoprecipitation.

Understanding homeobox gene specificity and function has been hampered by the lack of proven direct transcriptional targets during development. Dlx genes are expressed in the developing forebrain, retina, craniofacial structures and limbs. Dlx1/Dlx2 double knockout mice die at birth with multiple defects including abnormal forebrain development and decreased Dlx5 and Dlx6 expression. We have su...

متن کامل

Quantitative Analysis of GABAA Gamma Receptor Subunits in the Developing Embryonic Chick Forebrain

Objective(s) In this study we investigated the expression of GABAA receptor subunits during brain development. These receptors may change in the embryonic chick forebrain. Materials and Methodes The expression levels of four types of GABAA receptor gamma subunits (γ1, γ2, γ3 and γ4) were quantified in the embryonic chick forebrain at 32 hr, 3, 7, 14, and 20 days of incubation and day one aft...

متن کامل

HESX1- and TCF3-mediated repression of Wnt/β-catenin targets is required for normal development of the anterior forebrain.

The Wnt/β-catenin pathway plays an essential role during regionalisation of the vertebrate neural plate and its inhibition in the most anterior neural ectoderm is required for normal forebrain development. Hesx1 is a conserved vertebrate-specific transcription factor that is required for forebrain development in Xenopus, mice and humans. Mouse embryos deficient for Hesx1 exhibit a variable degr...

متن کامل

Conditional Loss of Arx From the Developing Dorsal Telencephalon Results in Behavioral Phenotypes Resembling Mild Human ARX Mutations.

Mutations in the Aristaless-Related Homeobox (ARX) gene cause structural anomalies of the brain, epilepsy, and neurocognitive deficits in children. During forebrain development, Arx is expressed in both pallial and subpallial progenitor cells. We previously demonstrated that elimination of Arx from subpallial-derived cortical interneurons generates an epilepsy phenotype with features overlappin...

متن کامل

Genome-wide identification of Smad/Foxh1 targets reveals a role for Foxh1 in retinoic acid regulation and forebrain development.

Foxh1, a Smad DNA-binding partner, mediates TGFbeta-dependent gene expression during early development. Few Foxh1 targets are known. Here, we describe a genome-wide approach that we developed that couples systematic mapping of a functional Smad/Foxh1 enhancer (SFE) to Site Search, a program used to search annotated genomes for composite response elements. Ranking of SFEs that are positionally c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human Molecular Genetics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2008